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Privacy-Preserving iVector-Based
Speaker Verification

Yogachandran Rahulamathavan , Kunaraj R Sutharsini, Indranil Ghosh Ray , Rongxing Lu ,
and Muttukrishnan Rajarajan

Abstract—This paper introduces an efficient algorithm to de-
velop a privacy-preserving voice verification based on iVector and
linear discriminant analysis techniques. This research considers a
scenario in which users enrol their voice biometric to access differ-
ent services (i.e., banking). Once enrolment is completed, users can
verify themselves using their voice print instead of alphanumeric
passwords. Since a voice print is unique for everyone, storing it
with a third-party server raises several privacy concerns. To ad-
dress this challenge, this paper proposes a novel technique based
on randomization to carry out voice authentication, which allows
the user to enrol and verify their voice in the randomized domain.
To achieve this, the iVector-based voice verification technique has
been redesigned to work on the randomized domain. The pro-
posed algorithm is validated using a well-known speech dataset.
The proposed algorithm neither compromises the authentication
accuracy nor adds additional complexity due to the randomization
operations.

Index Terms—Privacy, security, speech, iVector, authentication,
random domain.

I. INTRODUCTION

TRADITIONAL methods of authentication including pass-
words, PINs, and memorable words can be easily forgot-

ten, lost, guessed, stolen, or shared. However, authentication
using anatomical traits such as fingerprint, face, palm print, iris
and voice are very difficult to forge since they are physically
linked to the user. Thus, biometric systems impart higher levels
of security and have seen a rapid proliferation in a wide variety
of government and commercial applications around the world in
the last two decades [2]. However, several security and privacy
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challenges deter the public confidence in adopting biometric
systems. Few of them are described below:

Non-revocability: Unlike the alphanumeric passwords, it is
impossible to revoke the biometric data once its compromised;
hence, once lost the same biometric cannot be reused.

Privacy compromise: Inappropriate use of biometric data may
breach the users privacy directly and indirectly. These privacy
breaches can be categorised into three types as below:

� Biometric data privacy breach: The raw biometric data
of the user can be recovered from the stored templates if
there are no protections [2]. For example, many fingerprint-
based systems use minutiae features extracted from refer-
ence fingerprint images. It is possible to reconstruct the
original fingerprint image from the stored minutiae.

� Information privacy breach: If someone enrols the same
biometric data for different services then the biometric
templates in all of these systems are identical. This will
allow an adversary to use the templates from one system
to gain access to another system.

� Identity privacy breach: Since the biometric templates
used for different services are reasonably similar, there
is a possibility for linkability based attacks.

Several cryptographic techniques have been proposed in lit-
erature to overcome the above security and privacy challenges
(see Section II). The existing works modify various biometric
algorithms designed for different types biometrics data. To the
best of our knowledge, the work proposed in this paper is the
first PP work that redesigns the state-of-the-art iVector based
voice verification technique without compromising the accu-
racy for a negligible computational overhead [1]. The proposed
scheme has been validated using the well known TIMIT speech
corpus [6]. Theoretical proofs have been provided to validate the
privacy and security of the proposed solution. Rigorous experi-
ments show that the scheme mitigates the above issues without
compromising the accuracy.

The rest of this paper is organised as follows: The related work
is discussed in Section II. The speaker verification model with-
out privacy restriction, and mathematical tools and notations
necessary for the proposed algorithm are given in Section III.
In Section IV, we redesign the iVector based speaker verifica-
tion model using randomisation technique and the associated
performance results are given in Section V. The security and
privacy analysis is given in Section VI followed by conclusions
are discussions.
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II. RELATED WORKS

The use of voice verification over the Internet is becoming
very popular. For example, several financial institutes are using
speaker verification as a mean to verify its customers. At the
same time, recent changes in privacy legislation i.e., GDPR in
Europe, are enforcing organisations to provide sufficient privacy
guarantee when they use, process and store customer data. Since
voice data is unique, the privacy of the voice data should be
guaranteed.

This requires a novel voice verification solution with high ac-
curacy and privacy guarantee. PP research addresses this chal-
lenge by balancing privacy and usability of data. When it comes
to a PP solution, it is all about transforming the existing algo-
rithm to process the inputs when the inputs are either encrypted
via homomorphic encryption [3], [5], [7]–[10] or transformed
via salting [11], [16].

The aim of homomorphic encryption based PP solutions is
protecting the privacy of the input data. However, the existing
works redesign different machine learning algorithms i.e., face
recognition based on the principal component analysis [7], facial
expression recognition based on the linear discriminant analysis
[10], multi-class problem based on support vector machine [5],
[8], [9], are the few to mention here. These solutions achieve
the same accuracy as their corresponding traditional algorithms
subject to hefty computational overhead [3], [10].

On the other hand, salting based cancellable biometric
solutions increase the computation speed significantly com-
pared to the homomorphic encryption-based solutions [11],
[16]. However, these solutions either decrease the accuracy or
privacy.

In the domain of voice biometric, there are only a few no-
table PP voice verification works exist [3], [11], [13], [15],
[16]. Smaragdis and Shashanka proposed the first application of
secure multi-party computation (SMC) concepts for privacy-
constrained speech technology [13]. In their work, they re-
alised secure speech recognition using the hidden Markov model
(HMM) and a generalised version of the Paillier public-key
scheme, which allowed training and classification between mul-
tiple parties and achieved perfect accuracy.

Pathak et al. redesigned the Gaussian Mixture Model (GMM)
based speaker recognition [3] to achieve a similar privacy goal.
This work relies on homomorphic cryptosystems such as BGN
and Paillier encryption. This work has shown a proof-of-concept
of PP speaker recognition without compromising the accu-
racy. However, the shortcoming of the above cryptographic ap-
proaches [3], [13] is that far too much time is spent on the
encryption, which makes it impractical for real applications i.e.,
[3] requires few minutes for authentication.

In order to overcome the heavy computation that is in-
volved with the above homomorphic encryption schemes,
string-matching frameworks were proposed in [11], [16]. These
schemes convert the speech input represented by the super-
vectors to bit strings using locality sensitive hashing (LSH) and
counted the exact matches [11], [16]. Since it is easy to perform
string comparison with privacy, the method proves to be more
efficient; however, it lacks accuracy with EER=11.86%.

To the best of our knowledge, one and only work that proposes
a PP solution for iVector based speaker verification is [15]. The
work [15] presented a secure binary embedding (SBE) which is a
hashing scheme in an attempt to enable privacy for iVector based
speaker recognition. The work [15] uses a hashing technique
where similar templates are placed in close proximity in the hash
domain. Due to the inherent nature of hashing, the verification
accuracy obtained in [15] is much lower than the true accuracy
(when the traditional iVector solution provides EER = 1%, the
solution [15] provides EER = 20% when the privacy is high).

In contrast to all the above works, the proposed work in this
paper uses randomisation technique from information theory
which is neither computationally inefficient nor compromises
the privacy. This work not only provides the speed necessary for
real-time computation but also provides information-theoretical
privacy and highest possible accuracy. This solution is signifi-
cantly advanced than the existing solution in terms of accuracy,
privacy and speed. Note that the proposed solution can be ap-
plied to variants of ivector based speaker verification solutions
that calculates scores using cosine distances. If a solution such
as PLDA based ivector [18] uses different scoring method then
the proposed solution may not be sufficient.

III. SPEAKER RECOGNITION BASED ON IVECTOR AND

COSINE DISTANCE SCORING

Recently Dehak et al. proposed a pioneering work, namely
iVector, for voice verification [1]. The iVector model generates
a low-dimensional speaker-and-channel dependent space using
factor analysis [1]. Serveral channel compensation techniques
such as, within-class covariance normalisation (WCCN), linear
discriminant analysis (LDA), and nuisance attribute projection
(NAP), were applied on this low dimensional space to remove
the channel dependent noise [1]. Through rigorous experiments,
Dehak et al. concluded that iVector and LDA based speaker
verification outperforms the other competitive techniques [1].

Hence, as discussed in Section I, a PP version of ivector
model is developed in this paper. The aim of the proposed work
is to achieve privacy within user-server settings without reduc-
ing the accuracy subject to negligible complexity overhead. The
following section briefly describes the original speaker verifica-
tion model [1].

The work [1] mainly constitutes of two parts: 1) iVector fea-
ture extraction and speaker model building and 2) speaker ver-
ification. The first part extracts features of voice using several
techniques i.e., Mel frequency cepstral coefficients (MFCC),
Gaussian mixture model (GMM), Universal back ground model
(UBM), and maximum a posterior adaptation (MAP) [4]. The
feature extraction step is followed by a speaker model building
step i.e., obtaining matrix R in the equation (2) below. Once
R is obtained, voice feature of a user, called ivector, wtarget ,
can be enrolled in the server. Refer [1] for additional technical
details of the first part.

During the second part (i.e., speaker verification), the user is
required to send a voice feature vector wtest to the server. The
work [1] uses cosine distance scoring for speaker verification.
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The cosine distance scoring computes the value of the cosine
kernel between the target speaker ivector wtarget ∈ Rd×1 and
the test ivector wtest ∈ Rd×1 as a decision score [1]

score(wtarget ,wtest) =
< wtarget ,wtest >

||wtarget ||||wtest || � θ, (1)

where dimension d is the size of the iVector (i.e., d = 200 used
for the experiments in Section V-D). To compensate the channel
effect, as mentioned above, the work [1] considered three differ-
ent techniques namely 1) WCCN, 2) LDA, and 3) NAP. These
techniques compute projection matrices PWCCN , PLDA , and
PNAP from training speech data. In the following, the projec-
tion matrices are denoted by P (i.e., P ≡ PWCCN ≡ PLDA ≡
PNAP ). To preserve the inner-product in (1), and to apply
these channel compensation techniques, Dehak et al. used the
following approach [1]:

score(wtarget ,wtest)

=
(PT wtarget)T (PT wtest)√

(PT wtarget)T (PT wtarget)
√

(PT wtest)T (PT wtest)
,

=
wT

targetRwtest√
wT

targetRwtarget
√

wT
testRwtest

� θ (2)

where R = PPT ∈ Rd×d .
In a traditional system (i.e., without privacy constraints), the

user device extracts ivector w1 from a speech utterance and
sends it to the server during the enrolment phase. The server
obtains R from all the users who use the system for speaker
verification. During the recognition phase, the user device ex-
tracts another ivector w2 from a speech utterance and sends it to
the server. Now the server computes the score using the ivectors
w1 and w2 , and matrix R as follows:

score(w1 ,w2) =
wT

1 Rw2√
wT

1 Rw1
√

wT
2 Rw2

. (3)

If score(w1 ,w2) > θ then the server decides that the ivectors
w1 and w2 are generated by the same speaker.

IV. MODEL, OVERVIEW AND PRIVACY-PRESERVING APPROACH

Consider a voice verification system with N users. Lets call
the ivector w1 enrolled at the server as speaker model. During
the speaker verification stage, the user needs to send another
ivector w2 to the server. Lets call this ivector as test feature.
The server verifies the test feature against the speaker model.

Lets introduce another variable called secret key to randomise
the speaker model and test feature. Refer Section IV-B for more
details. The randomisation operation converts the speaker model
and test feature into randomised speaker model and randomised
test feature. Now the secret key is split into two shared-secret-
keys: one for user and one for server.

Since there are N users, the server holds N randomised
speaker models and N shared secret keys. During the verifi-
cation stage, the user device randomises the test feature vec-
tor using it’s shared secret key and sends the randomised test

TABLE I
RANDOMISATION: A TOY EXAMPLE

feature to the server. Within this context, lets define the follow-
ing privacy threats and goals of the proposed work:

� Revocablity: In the event of data breach, it should be pos-
sible to revoke the randomised speaker model and enrol a
new randomised speaker model.

� Template diversity: It should be infeasible for an adversary
to reveal whether the same user has been registered for
different services.

� Compromising the test feature: If an adversary has access
to the the test feature, then it should be infeasible for the
adversary to impersonate the user in future.

� Compromising the data from the user device: If the user
device is compromised then the stored shared secret key
shouldn’t be used to impersonate the user in future.

To satisfy the above privacy threats, the traditional speaker
verification should be redesigned. Lets introduce a crypto-
graphic primitive called randomisation technique in the fol-
lowing section which will be used to develop a PP speaker
verification.

A. Randomisation Technique

Denote an integer message m ∈ M = {−2M to 2M} and an
integer secret key s ∈ S = {−2R − 2M to 2R + 2M } where
M and R are integers satisfy 2R >> 2M . The secret key s ∈ S
is generated randomly from a uniform distribution in the range
of S = {−2R − 2M to 2R + 2M }. Now we propose the follow-
ing algorithm to randomise the message m into a randomised
message r ∈ R = {−2R to 2R} using s.

Lets consider a toy example with a message domain M =
{−2 to 2} (i.e., M = 1), randomised message domain R =
{−4 to 4} (i.e., R = 2) and secret key domain S = {−6 to 6}
(M = 1 and R = 2). The possible messages, secret keys and
the corresponding randomised messages for the toy example
are shown in Table I.

Let’s suppose the randomised message is −4. This −4 could
have been obtained from any messages in the message domain
(i.e., −4 = −2 + −2 or = 1 + −3 or = 0 + −4 or = 1 +
−5 or = 2 + −6). Similarly if the randomised message is −3,
this randomised message could have been obtained from any
possible messages (i.e., −3 = −2 + −1 or = −1 + −2 or = 0
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Algorithm 1: Randomisation Technique.
1: procedure randomise(m)
2: Generate secret key s
3: DO r = m + s
4: IF r ∈ {−10R to 10R}
5: Return r, s
6: ElseIF
7: Go to Step 2
8: EndIF

+ −3 or = 1 + −4 or = 2 + −5). It is obvious from Table I that
any randomised message could be generated from any message
from the message domain. Hence, if an attacker compromises
a randomised message, then it is impossible for the adversary
to recover message m from the randomised message r without
knowing the secret key s i.e., posterior probability and prior
probability of the messages are equal. Hence, this algorithm
follows information-theoretic security [12] (refer Section VI
for formal proof).

B. Proposed Privacy-Preserving Approach

This section proposes the following two algorithms: 1) Basic
Approach and 2) Strong Approach. The basic approach protects
the speaker model w1 residing at the server side. The strong
approach protects both the speaker model and test feature vector,
w1 and w2 . The following sections explain both the approaches
in detail.

C. Basic Approach

The basic approach (BA) transforms the speaker model w1
into a different vector using one-way cryptographic function.
Therefore the transformed version leak nothing about the origi-
nal values of w1 albeit it can still be used for speaker verification.
This approach protects against any unwanted privacy leakages
if the server happens to be compromised. The randomisation
technique proposed in Algorithm 1 in Table I can be used as a
one-way cryptographic function.

The user device executes Algorithm 1 to randomise w1 using
a random vector r1 . Then user enrols w1 + r1 at the server
and keeps r1 . During the verification phase, the user sends not
only w2 but also r1 to the server. The server first obtains w1
by subtracting r1 from the stored randomised feature w1 +
r1 followed by executing (3). Once the verification process is
completed, the server will keep only the randomised vector
w1 + r1 and delete all other parameters (i.e., r1 , w2 and w1).

Since the speaker model is randomised in the BA approach,
any attack on the server will not reveal w1 to the adversaries.
In the event of an attack, the speaker model can be revoked and
a new speaker model can be enrolled. Note that this approach
cannot protect the privacy of user biometric if the server has al-
ready been infected by a malware which can monitor the speaker
verification process. Hence, the BA approach trusts the server

and assumes that the server follows the procedure and free from
malware.

D. Strong Approach

The strong approach (SA) does not require a trusted server
for speaker verification. The aim of the SA approach is that even
if the server is infected by a malware, it should be infeasible for
the malware to obtain w1 and w2 . To achieve this objective,
during the enrolment phase, the user randomises the feature
vector w1 using random vectors r1 and rx using the Algorithm
1 and enrols w1 + r1 and wx

1 = w1 + rx at the server and keeps
r1 and wy

1 = −r1 where

w1 = wx
1 + wy

1 . (4)

Then the user deletes w1 from the user device (the intuition be-
hind this split is explained in Section VI-B). During the speaker
verification phase, the user device randomises the test feature
vector w2 using a random vector r2 and sends w2 + r2 to the
server and keeps r2 .

Then the server uses w1 + r1 , and w2 + r2 to computes (3)
as follows:

score(w1 + r1 ,w2 + r2)

=
(w1 + r1)T R(w2 + r2)√

(w1 + r1)T R(w1 + r1)
√

(w2 + r2)T R(w2 + r2)
,

=
wT

1 Rw2 + n1√
wT

1 Rw1 + n2
√

wT
2 Rw2 + n3

, (5)

where

n1 = wT
1 Rr2 + rT

1 Rw2 + rT
1 Rr2 ,

= wx
1

T Rr2 + wy
1

T Rr2 + rT
1 Rw2 + rT

1 Rr2 , (6)

n2 = wT
1 (2R)r1 + rT

1 Rr1 ,

= wx
1

T (2R)r1 + wy
1

T (2R)r1 + rT
1 Rr1 , (7)

n3 = wT
2 (2R)r2 + rT

2 Rr2 . (8)

In the numerator of (5), the true value wT
1 Rw2 has been ran-

domised by n1 . Similarly, in the denominator of (5), the true
values wT

1 Rw1 and wT
2 Rw2 have been randomised by n2 , and

n3 , respectively. In order to correctly verify the user, the server
needs to calculate n1 , n2 , and n3 . However, the server does not
have all the variables to correctly computes n1 , n2 , and n3 . The
table in Fig. 1 shows all the variables that are known only to the
server and known only to the user.

Therefore, the user and server need to compute n1 , n2 , and n3
jointly without leaking any sensible information to each other
(i.e., secure two-party computation [14]). Lets define six vectors
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Fig. 1. Message flow diagram of the proposed SA algorithm. The left figure shows the enrolment steps, the right figure shows the verification steps, and the table
shows the parameters that are known only to the user and the parameters known only to the server.

u1 , s1 , u2 , s2 , u3 , and s3 as follows:

u1 =
[
rT

2 vec(r2w
y
1

T + w2rT
1 + rrT

1 )
]T

∈ R(d+d2 )×1 ,

s1 =
[
wx

1
T R vec(R)T

]T

∈ R(d+d2 )×1 ,

u2 =
[
rT

1 vec(r1w
y
1 )T vec(r1rT

1 )T
]T ∈ R(d+2d2 )×1 ,

s2 =
[
2wx

1
T R vec(2R)T vec(R)T

]T

∈ R(d+2d2 )×1 ,

u3 =
[
vec(r2wT

2 )T vec(r2rT
2 )T

]T ∈ R2d2×1 ,

s3 =
[
vec(2R)T vec(R)T

]T ∈ R2d2×1 ,

where vec(.) denotes the vectorisation operation. From the table
in Fig. 1, the vectors u1 , u2 , and u3 can be obtained by the user
without interacting with the server. Similarly, the vectors s1 , s2 ,
and s3 can be obtained by the server without interacting with
the user. Hence, the equations (6)–(8) can be modified into

n1 = uT
1 s1 , n2 = uT

2 s2 , & n3 = uT
3 s3 . (9)

To calculate n1 , n2 , and n3 , the user and server need to
interact with each other. The following subsection explains this
procedure.

E. Privacy-Preserving Scalar Product Algorithm

To compute the required scalar products in (9), the user and
server follow a PP protocol where no party can learn the other
party’s input. At the end of the protocol server should be able
to obtain n1 , n2 , and n3 . This can be achieved by the PP scalar
product algorithm in Table II [17].

The user and server jointly execute the protocol in Table II
three times to compute (9). Initially the user generates a number
of random values to randomises its input vector a (= u1 for first
execution) and obtains randomised vector [C1 , C2 , . . . , Cn ]. As
these randomisation operations use modulo reduction, the server
cannot reverse engineer and reveal the user’s input data from

TABLE II
PP SCALAR PRODUCT ALGORITHM [17]

[C1 , C2 , . . . , Cn ] (refer [17] for the formal security proof and
correctness).

Upon receiving [C1 , C2 , . . . , Cn ], the server now performs
multiplication operations to get [D1 ,D2 , . . . , Dn ]. These values
are then added through modulo addition followed by randomi-
sation operation using γ. The final value is sent to the user. The
user obtains aT b + γ using the secret key s−1 mod p. Finally
the server receives aT b + γ from user and subtracts γ to get
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TABLE III
TIMIT DATABASE

aT b (i.e., = uT
1 s1). Message flow diagram of the proposed SA

algorithm is shown in Fig. 1.

V. PERFORMANCE ANALYSIS

This section describes the dataset used for the experiments,
results and the complexity, security, and privacy analysis of the
proposed algorithm.

A. Dataset

TIMIT speech corpus has been used to evaluate the accuracy
and reliability of the proposed algorithm [6]. The TIMIT speech
corpus contains broadband recordings (each recording lasts for
around 3 seconds) of 630 speakers of eight major dialects of
American English. Each speaker has 10 speech samples. Out of
10 samples, 8 were used to build the speaker model.

For experiment, the TIMIT data corpus has been split into
two: 1) the first two dialect regions with 151 speakers are used
for training and testing and 2) the last four dialect region with
277 speakers were used to build background model. Table III
shows the statistics of the TIMIT dataset.

B. Experiments on the TIMIT Database Without Privacy

To validate the proposed method, we first obtain the verifica-
tion accuracy of the iVector algorithm on TIMIT dataset using
the pre-divided speech samples shown in Table III.

C. Definitions

Next subsections present various tests to validate the pro-
posed model. To facilitate the description of tests, lets introduce
a few definitions used in speaker verification to measure the per-
formance: False Acceptance Rate (FAR), False Rejection Rate
(FRR), Equal Error Rate (EER), and Detection Error Tradeoff
(DET) curve1.

FAR and FRR are the two types of errors defined as follows:

� FAR= Number of False Acceptance
Total Number of Imposter Attempts × 100%,

� FRR = Number of False Rejection
Total Number of Geinune Attempts × 100%,

where False Acceptance means the system grants access to an
impostor, and False Rejection means the system denies access to

1DET curves are plotted using NIST DET-ware-v2.1 tool: Available On line:
https://www.nist.gov/file/65996, Accessed on 5th of June, 2018.

Fig. 2. Score distribution of genuine and imposter tests.

an enrolled speaker. EER represents the operating point where
the FAR is equal to the FRR. DET curve has been used in
speaker verification to view FAR, FRR, and EER on the same
curve. The DET curve comprises FRR in the y-axis and FAR
on the x-axis. The EER represents the point on the DET curve
where both FRR and FAR are equal.

D. Baseline Test

As described above, there are 151 users enrolled at the server.
There are two speech samples available for each user for veri-
fication. To test the performance of the traditional (i.e., without
privacy constraints) speaker verification, the following two tests
are conducted:

1) Genuine Attempts. Client-Client: In this test, for each
speaker, the score is calculated using the speaker’s speaker
model against the speaker’s two test utterances. Hence, the
scores for 151× 2 = 302 tests are obtained using (3).

2) Imposter Attempts. Imposter-Client: In this test, each
speaker’s test utterances are tested against other 150 users’
speaker models. This leads to 151× (151− 1)× 2 = 45300
tests and the score for each test has been obtained using (3).
Fig. 2 shows the distribution between genuine attempts and im-
poster attempts tests. When the threshold θ = 1.34 the EER is
6.5%. We will use this result as a benchmark to compare the
performance of the proposed algorithm.

E. Testing the Proposed Algorithm

Same experimental protocols described in Section V-D has
been repeated to test the proposed algorithm. Since the PP pro-
tocol in Table II is suitable for integers, the decimal values
in speaker models and test feature vectors must be scaled to
integers via scaling and quantisation operations followed by
randomisation.

Table IV shows few examples for scaling, quantisation and
randomisation using the values of ivectors (i.e., w1 or w2) and
projection matrix (i.e., R). When the scaling factor increases,
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TABLE IV
SAMPLE DATA SHOWING THE EFFECTS OF SCALING, QUANTISATION AND RANDOMISATION

Fig. 3. Accuracy of the proposed scheme for various scaling factors.

the effect of quantisation is decreasing e.g., the sample value
in the first row in Table IV (0.010924) is almost half of the
value in the second row (0.017854). However, when the scaling
factor is equal to 100 (2nd column), both the values became
equal. When the scaling factor is 1000 (fourth column), the
ratio between both the values is getting closer to the correct
ratio. As shown in Figs. 5 and 6, the elements of iVectors follow
normal distribution with a mean 0 (approximately) and standard
deviation 0.01.

The last three columns of Table IV shows how the scaled
values are randomised by different sizes of random numbers.
The fifth and last columns in Table IV show how the scaled
elements in fourth column are randomised using random num-
bers between −10 to 10, and −106 to 106 , respectively. The
experiments demonstrated that the output elements of the ran-
domisation operation always follow uniform distribution e.g.,
when the iVectors are scaled by 1000 followed by randomisa-
tion operation in the range of −106 to 106 according to Algo-
rithm 1, then the output distribution is uniform with standard

deviation 5.7825× 105 (where the theoretical standard devia-
tion for the uniform distribution in the range −106 to 106 is
5.7735× 105)–refer Fig. 7.

To evaluate the impact of scaling and rounding operations,
we repeated the two tests conducted in Section V-D but using
the proposed algorithm for scaling factors s = 100, s = 200,
s = 400, s = 600, s = 800, and s = 1000 and randomisation
with random numbers in the range of−106 to 106 . Fig. 3 shows
the DET curves for the above scaling factors. When the scaling
factor increases from 100 to 1000, the accuracy of the proposed
scheme approaches the benchmark accuracy. For a scaling factor
s = 1000, the proposed algorithm illustrates identical recogni-
tion as the benchmark. This validates that the proposed model
does not compromise the accuracy.

In order to test the effect of randomisation (or to answer
why the scaled and quantised input elements are randomised
using large random numbers (106) instead of 10), we repeated
the baseline test (experiment conducted in Section V-D) but
with a randomised test feature vector and projection matrix. We
used different size of random values ranging from 1 to 105 to
randomise the elements of test features and projection matrix.
We also tested the baseline model with pure random vectors
(i.e., generated independently of speech) as test features. As
shown in Fig. 4, when the size of the random values decreases,
the accuracy increases. When the size of the random values
are in the range of 105, there is no significant difference in
accuracy between random testing (Pure Random in the Fig. 4)
and randomised testing. It means if the input elements are not
masked by large random numbers then it is possible for the
adversary to infer the identity of the input samples. However,
when larger random numbers (i.e., 105 in this experiment) are
used to randomise the test features, the accuracy of the system is
closer to the accuracy of pure random inputs. It means when the
input elements are randomised by large random numbers, there
is no different in statistical properties between pure random
values and randomised input values.

F. Complexity Analysis

The proposed PP algorithms require additional mathematical
operations to protect the parameters from the untrusted server.
The BA algorithm does not require any additional mathematical
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Fig. 4. Accuracy of the proposed scheme for various scaling factors.

Fig. 5. Distribution of raw iVector components (mean is 1.0245× 10−5 and
standard deviation 0.0106).

operations except addition and subtraction, hence we assume
the complexity of BA is same as the traditional (i.e., without
privacy constraint) algorithm. Lets denote the time complexity
for one multiplication as tmul and for square-root as√. Since
the ivector feature extraction is common for both the traditional
and the proposed SA algorithm, lets compare the complexity of
both the algorithm after the feature extraction.

In the traditional algorithm, once the ivector has been ex-
tracted, the user device does not require to perform any op-
erations. However, the server needs to compute (3) which
requires 3(d2 + d)tmul + 2√. operations if the ivectors are
d−dimensional. In the proposed SA algorithm, the user de-
vice and server need to perform some additional computations
to obtain (9) via scalar product algorithm in Table II. To execute
the algorithm in Table II, the server incurs (2n + 4)tmul com-

Fig. 6. Distribution of raw iVector components after scaling operation.

Fig. 7. Distribution of raw iVector components after randomisation operation
(standard distribution is 5.7825× 105).

plexity and the user device incurs (2n + 5)tmul complexity if
the dimension of the input vectors is n.

In order to compute the scalar products in (3), the user
and server need to invoke the protocol illustrated in Table II
twice (to obtain n1 and n3). It should be noted that n2 in
(3) can be calculated offline and pre-stored at the server side
as it does not require speaker recognition parameters. Hence
the total computational cost for the user and server would be
2(2n + 5)tmul and 2(2n + 4)tmul + 3(d2 + d)tmul + 2√., re-
spectively. Hence the computational overheads for the user and
server are 2(2n + 5)tmul and 2(2n + 4)tmul , respectively (i.e.,
subtract the traditional algorithm’s complexity from proposed
algorithm’s complexity).

In order to evaluate the complexity, we implemented the
proposed scheme on a computer - Intel(R) Core(TM) i5-
4210U CPU @1.70 GHz with 8 GM RAM - using Mat-
lab 2016a. We modified the iVector library from GitHub
(github.com/pedrocolon93/ivectormatlabmsrit) to implement
the proposed scheme. Using this implementation, we tested
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Fig. 8. Computational overheads of the proposed scheme for user and server.

the complexity of the proposed scheme for different values
of n. We performed 50 iterations of the proposed scheme
by varying the input size n from 103 to 106 . The average
time taken is illustrated in Fig. 8. The computational time in-
creases linearly up to n = 105 . From n = 105 , the time in-
creases exponentially due to processing large amount of data
in a sequential order. This problem can be solved by paral-
lel processing by executing the scalar product computation
in multiple threads. For example, if n = 6, instead of cal-
culating [a1 a2 a3 a4 a5 a6 ].[b1 b2 b3 b4 b5 b6 ]T sequentially,
the problem can be split into two: [a1 a2 a3 ].[b1 b2 b3 ]T and
[a4 a5 a6 ].[b4 b5 b6 ]T . The results can be added in the end.

For the experiment in Section V, the dimension of iVector has
been set to d = 200 [1]. Therefore the sizes of the input vectors
in (9) for Table II, are in the range of n = 40000 to n = 80000.
This is within the linear time complexity range i.e., the incurred
computational overhead is less than 0.05 seconds for both the
user and server.

VI. SECURITY AND PRIVACY ANALYSIS

Since the proposed algorithm relies on randomisation, the
following subsections provide a formal security proof for the
proposed randomisation algorithm in Section VI-A and a privacy
analysis for the proposed SA algorithm in Section VI-B.

A. Security Model and Proof for the Proposed Randomisation
Algorithm in Section VI-A

This section proves that the proposed randomisation algo-
rithm in Section IV-A satisfies the information-theoretic se-
curity. Denote a mapping f :M×S �−→ R. We call such a
mapping f over a message space M to be perfectly random
if and only if for an uniform probability distribution s over S,
every message m ∈M and every randomised message r ∈ R,
probability P [M = m|R = r] is constant greater than zero, i.e.,
looking at the randomised message no one can guess the mes-
sage. Theorem 1 shows that Algorithm 1 in Section IV-A attains
perfect randomisation.

Theorem 1: Let M = [−a, a] ∩ Z and S = [v1 , v2 ] ∩ Z be
two sets such that a < v1 < v1 + a < v2 . Also let

R = {m + s;m ∈M, s ∈ S, v1 + a ≤ m + r ≤ v2 − a}.
Then for any r ∈ R, P [M = m|R = r] = 1

|S| .
Proof: Let r ∈ R and m ∈M. Then, it is easy to check that

v1 ≤ r −m ≤ v2 . So,

P [M = m|R = r] = P [r − s = m|R = r]

= P [r − s = m] = P [s = r −m] =
1
|S|

�
The perfect randomness leads to adaptive indistinguishability.

But before giving the proof, we first consider the definition of
adaptive indistinguishability game.

Definition 1: [Gm AdA,π (1s)]
1. The adversaryA is given oracle access to Encs(.) and out-

puts a pair of messages m0 ,m1 ∈M of the same length.
2. Random bit b← {0, 1} is chosen, and s← S is also cho-

sen randomly. Then a ciphertext r = s + mb is computed
and given to A.

3. The adversary A continues to have oracle access to
Encs(.) and outputs a bit b′.

4. The output of the experiment is defined to be 1 if b′ = b,
and 0 otherwise. In case Gm AdA,π (1s) = 1, we say that
A succeeded.

Definition 2: An encryption scheme, denoted by π =
(KeyGen,Enc,Dec), is said to be adaptively secure under cho-
sen plain text attack if for all probabilistic polynomial time
adversaries A, there exists a negligible function negl such that
P [Gm AdA,π (1s) = 1] ≤ 1

2 + negl(s), where the probability
is taken over the random coins used byA, as well as the random
coins used in the game.

Let us consider the encryption scheme π′ = (Gen,
Encs ,Decs) such that Gen() samples uniformly at random a
key s from the set S, i.e., P [S = s] = 1

|S| . For any m ∈M,
Encs(m) = m + s and for any r ∈ R, Decs(r) = r − s. Fol-
lowing theorem shows that this scheme is adaptively secure.

Theorem 2: π′ is adaptively secure under chosen plain text
attack.

Proof: Let |S| ≈ 2λ. Let us consider the game
Gm AdA,π ′(1λ). Note that A being a polynomial adver-
sary, may call the encryption oracle polynomial (in λ) number
of times before receiving challenge cipher. Let this polynomial
be p(λ). Let Repeat be the event that the key used in challenge
phase is used in any of the previous calls.

Note that P [(Gm AdA,π ′(1λ) = 1) ∧ Repeat] ≤ P [Repeat]
= p(λ)

2λ .
Also when Repeat does not occur, adversary has absolutely

a random view and thus,
P [(Gm AdA,π ′(1λ)=1) ∧ Repeat]=P [Repeat]×P [(Gm

AdA,π ′(1λ)=1)|Repeat] ≤ P [(Gm AdA,π ′(1λ)=1)|Repeat]
= 1

2 .
So,

P [Gm AdA,π ′(1λ)=1] =P [(Gm AdA,π ′(1λ) =1) ∧ Repeat]

+ P [(Gm AdA,π ′(1λ) = 1) ∧ Repeat] ≤ p(λ)
2λ

+
1
2
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We note that p(λ)
2λ is negligible in λ which completes the proof.

�

B. Privacy Analysis for the proposed SA Algorithm
in Section VI-B

The ultimate aim of the proposed algorithms is to protect user
voice biometrics stored at and transmitted to the server. Both the
proposed BA and SA algorithms randomise the voice feature
vectors using random vectors and invoke two-party computa-
tion. During the two-party computations, if the user and server
exploit the proposed randomisation algorithm to mask the data,
as shown in the previous section, then the randomised data is
information theoretically secure. Hence lets prove that the pro-
posed SA algorithm does not leak any unintended data during
the two-party computation.

1) Privacy Proof for SA Algorithm: During the enrolment
process, the user device randomises the ivector w1 using the pro-
posed randomisation algorithm and sends only the randomised
ivector w1 + r1 and wx

1 = w1 + rx to the server and stores the
random vectors r1 and−rx in the user device. Then the user de-
vice deletes w1 and rx . After this enrolment process, the server
holds w1 + r1 and wx

1 = w1 + rx while the user holds r1 and
wy

1 = −rx . Hence, even if the server has been compromised by
an adversary after the enrolment, it is information-theoretically
infeasible for the adversary to retrieve w1 from w1 + r1 and
wx

1 = w1 + rx without r1 and rx . Similarly, if the user de-
vice which holds r1 and wy

1 = −rx is being compromised by
an adversary, it is information-theoretically infeasible for the
adversary to retrieve w1 . To launch a successful attack, the ad-
versary needs to compromise both the server and user device,
which is an extreme condition and out of the scope of this paper.

During the verification stage, the ivector w2 is again ran-
domised into w2 + r2 where the user device keeps r2 and the
server gets w2 + r2 . Similar to the above discussion, w2 cannot
be obtained from w2 + r2 . However, in order to get the true
score, the user device and server need to perform the two-party
computation using the PP scalar product algorithm in Table II.
As shown in [17], the security of the algorithm in Table II re-
lies on randomisation (User’s inputs a1 , a2 , . . . are randomised
by large random numbers c1 , c2 , . . .) and achieves information-
theoretic security.

C. Privacy Leakage Analysis

The previous section provided a theoretical proof showing
that the proposed algorithm is information theoretically secure.
To visualise this and analyse whether the randomised features
still preserve the statistical properties of speech feature, a numer-
ous experiments are conducted in this section. We can broadly
split the parameters required for a successful verification into
four: 1) voice 2) randomised iVector (w1 + r1) 3) parameters
stored on the user device and 4) server-side parameters. In order
to evaluate the strength of the proposed algorithm, the following
four attacks are considered:

1. Compromised user device attack
2. Compromised server attack

Fig. 9. Stolen key attack scenarios.

3. Compromised user voice attack
4. Pure random attack
1) Compromised User Device Attack: In this attack, the ad-

versary has access to the user device and the parameters stored
during the enrolment. But do not have access to the user voice
to generate legitimate test ivector. Hence, the adversary tries
to combine the parameters from the compromised user device
with the test features of other users. Then the adversary tries
to verify against the compromised user’s speaker model resid-
ing at the server. To evaluate this, 2× 150× 151 tests [300 test
utterances from other users are combined with the parameters
of the compromised user device and this is repeated for all the
users] are conducted and the corresponding decision scores are
obtained.

2) Compromised Server Attack: In this attack, the adver-
sary has access to the randomised ivectors w1 + r1 of all the
users stored at the server. Let’s also assume that the adversary
holds the feature vectors of all users but neither know the cor-
responding ivectors stored at the server or keys stored at the
user device. Now the attacker uses these randomised ivectors to
simulate a speaker verification system and tries to find out the
corresponding users for each stolen randomised ivector. Hence,
the adversary tries to measure the decision score by applying
those features against each and every randomised ivector. Again
2× 151× 151 tests are conducted and the corresponding deci-
sion scores are obtained.

3) Compromised User Voice Attack: In this attack, the at-
tacker has access to the user’s voice recording but does not have
access to the parameters stored at the user device. Now the at-
tacker generates random numbers and randomises the voice fea-
ture and tries to impersonate. Hence, this experiment generates
300 random vectors same size as the feature to obtain 300 ran-
domised test features. To analyse the performance, 300× 151
tests are conducted and the corresponding decision scores are
obtained.

4) Pure Random Attack: In this final test, the traditional so-
lution has been considered but instead of using the legitimate
test features, purely random vectors in the same domain and
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same size as the legitimate test ivector used. Hence, we gener-
ate 300 random vectors for each user and conducted 300× 151
tests.

Fig. 9 displays the DET curves for the above attacks. In the
same figure, we displayed the baseline model. Interestingly,
from Fig. 9, the equal error rate for all four attacks are around
50% and there is no significant difference between the first three
attacks against the pure random attacks (the fourth attacks). This
clearly shows that there are no advantages for an adversary who
compromises the parameters of the proposed systems than just
launching random attacks. This concludes that the proposed
algorithm is information theoretically secure and all four pa-
rameters must be combined to reveal the statistical properties.

VII. CONCLUSION

In this paper, an efficient privacy preserving speaker verifi-
cation protocol is proposed. To achieve better efficiency and
privacy, the proposed solution algorithmically redesigned the
iVector and linear discriminant analysis based speaker verifica-
tion techniques to incorporate randomness without affecting the
final outcome. The proposed scheme is based on randomisation
technique and it only relies on multiplication and addition. In
this scheme, two parties involved, the user and the server, need to
perform verification interactively. In addition, it is proved using
information-theoretic security that the algorithm is secure. It is
also shown empirically that the proposed scheme provides good
overall accuracy without increasing the computational overhead.
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